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A B S T R A C T   

Blood pressure (BP) assessment and dynamic detection are of great significance for timely detection of the 
morbidity of hypertension, which is a major risk factor for most cardiovascular diseases (CVDs). It has been 
proved that the dynamic BP can be effectively predicted by using the combined input of photoplethysmogram 
(PPG) and electrocardiographic (ECG) signals. In this paper, we proposed a hybrid neural network architecture, 
which contains CNN-Sequential-Adapt layer, ResNet25_BP layer with squeeze and excitation (SE) block and fully 
connected layers, for BP estimation. The structure based on the convolutional network aims at the current inputs, 
which can effectively absorb the graph information of the inputted biological signals and make the model more 
stable and reliable. We evaluated the performance of two datasets including 1216 and 40 subjects, based on the 
criterions of British Hypertension Society (BHS) and the Association for the Advancement of Medical Instru
mentation (AAMI). According to the BHS and AAMI standards, the outputs of the model achieved grade A on BHS 
and met the AAMI criteria. The mean absolute errors (MAE) of systolic BP and diastolic BP are 3.70 and 2.81 
mmHg in the large dataset, and 1.37 and 0.93 mmHg in the small dataset, respectively.   

1. Introduction 

Cardiovascular diseases (CVDs) including hypertension and 
arrhythmia are the main causes of death worldwide, especially for the 
elderly living in countries that do not have adequate medical treatments 
[1]. The risk of CVDs has shifted to the young people who have been sub- 
healthy and inactive in the past few years. The occurrence of CVDs is 
usually sudden and fatal. Monitoring of blood pressure (BP) is consid
ered as one of the necessary methods to avoid CVDs caused by the 
variation of BP [2]. 

The clinical noninvasive methods of BP measurement are mainly 
used by the blood cuff, including auscultation, oscillometry and volume 
clamping [3]. These BP measurement methods have been lasted for a 
long time and have some limitations, such as discontinuity and incon
venience. Obviously, these methods cannot be used to monitor the 
continuous BP of patients. Meanwhile, the invasive methods that can 
measure BP continuously were only used in patients who have serious 

disorder and medical observation in intensive care unit. The invasive 
methods are the gold standard, but cannot be the mainstream method 
because its cost is unacceptable for people without serious illness. Due to 
medical needs, simple continuous BP monitoring methods are urgently 
needed to be applied in clinical diagnosis. 

The cost of continuous BP detection will be greatly reduced if BP can 
be obtained by correlating it with some biological signals which are 
easily detectable, such as photoplethysmography (PPG) and electro
cardiograph (ECG). Previous works have proved that BP can be effec
tively predicted by using the combined PPG and ECG. The ECG and PPG 
which are easy to obtain from the wearable device or instrument have 
become the signals to estimate BP in recent decades [4,5]. 

In the early applications of these signals, the pulse wave velocity 
(PWV) and the pulse transit time (PTT) were used to build a complex 
linear or nonlinear relationship with BP [6,7]. The relationship between 
BP and pulse wave has been studied for a long time. Mukkamala et al. 
used a model for the relationship between PTT, age, and sex and BP to 
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determine the PTT-BP calibration curves for each age and sex [8]. Singla 
et al. adopted wavelet transform on ECG and PPG signals, and estimated 
BP value through the joint detection of these signals [9]. Pulse arrival 
time (PAT) that is defined as the time delay from the R-peak of ECG to 
the next trough of PPG during a specific period was also considered as a 
parameter to estimate BP [10]. Liu et al. studied the information based 
on the waveform of PPG and estimated BP with multiple regression 
model [11]. A method based on the combination of PPG signals 
morphology and ECG was proposed by Li et al. [12]. Shin et al. 
simplified the PPG waveform by using an approximate model and then 
analyzed it as blood flow velocity and acceleration using the derivative 
of PPG with the pressure index (PI) introduced as a new factor [13]. 

Recently, the machine learning (ML) methods were also applied in 
the field of cuffless BP estimation based on the clinical data or the 
relevant physiological signals [14]. Early ML methods typically used 
logistic regression analysis, support vector machine (SVM) and other 
methods based on the manually selected feature extraction. Features 
selected from PPG signals include the width of the 1/2 and 2/3 ampli
tudes, the foot extracted PAT, the midpoint and peak value, the systolic 
upstroke time, and the diastolic time [15]. The eigenvalues, such as the 
Womersley number, were also suggested as feature inputs which con
tained information of waveform for BP estimation [16]. Kachuee et al. 
discussed a ML method to extract feature values from PPG and then 
predict BP with SVM [17]. Kachuee et al. also proposed a framework of 
AdaBoost which consists of 1000 decision trees for BP estimation with 
the extraction of two types of features [18]. Ding et al. improved the 
accuracy of long-term BP monitoring by introducing new indicators, 
photoplethysmogram intensity ratio (PIR), into the regression model 
[19]. Lin et al. extracted nineteen eigenvalues based on PPG and PTT on 
a small sample and estimated BP using the linear regression [20]. Feng 
et al. proposed a ML strategy based on the regularized linear regression 
(RLR) to construct BP models with different covariates for the corre
sponding groups on 28 subjects. The RLR of the individual was used as 
the initial calibration, and the recursive least squares method was used 
for re-calibration [21]. Hassani et al. applied a nonlinear mapping to 
reduce the size of the feature vector by mapping the input parameters to 

a potential space, used a multi-stage noise reduction technique to 
effectively smooth the input signals, and then considered SVM to esti
mate BP values [22]. By evaluating the correlation between various 
characteristic points and BP, it was found that the diastolic time (DT) 
which can be computed by the distance from the peak to foot of PPG has 
a high relevance with BP [23]. Hu et al. used a single-channel PPG 
signals to estimate systolic BP (SBP) and diastolic BP (DBP) by an inte
grated ML algorithm of XGBoost [24]. 

Due to the specificity of the biological signals from the individual 
bodies, the features extracted from morphology are usually error prone. 
Furthermore, the morphological features with manual selection may 
have a good performance, but the ML-based methods need the profes
sional medical knowledge to set up the rule-making formula [25]. Thus, 
different from the above statistical rule-making ML methods, the deep 
learning (DL) technology was applied to BP estimation, which abandons 
the statistical rule-making processes. A hybrid neural network model 
based on the mean impact value and genetic algorithm was discussed for 
BP prediction from PPG signal [26]. Tanveer and Hasan used the fully 
connected layer and LSTM layer neural network to predict BP on a small 
sample [27]. Slapničar et al. took the PPG and its first and second de
rivatives as inputs into a spectral-temporal deep neural network with 
residual connections to mimic the dependence between PPG and BP 
[28]. A composite network structure using convolutional neural 
network (CNN) and LSTM was proposed by JEsmaelpoor et al. in which 
the CNN layer was used to extract eigenvalues, and then sent to LSTM for 
BP estimation based on temporal variation [29]. Eom et al. proposed a 
model consisted of CNN, a bidirectional gated recurrent unit, and an 
attention mechanism [30]. Through the experimental comparison, it 
was found that the model with attention mechanism shows better per
formance for BP prediction. Aguirre et al. discussed a cuffless method to 
estimate the morphology of the arterial BP through a deep learning 
model based on a seq2seq architecture with attention mechanism [31]. 
Beyond the BP predication, the deep neural network is also able to di
agnose various diseases, such as diabetes and congestive heart failure, 
by inputting various biological signals, such as blood glucose concen
tration, diastolic BP, body mass index, heart rate variability [32,33]. 

Fig. 1. Comparison of PPG (a) and ECG (b) signals before and after filtering. The baseline drift and the high frequency noise in the signals are removed effectively.  
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In this work, we focus on the feature value extraction based on 
graphics information of PPG and ECG, and adopt a carefully designed 
feature extraction structure, which is more suitable for a better BP 
prediction with large subject databases. In our model, the input signals 
are treated as an overall picture, in which the length is the size of the 
signal segment, and the width is the number of signal types. We consider 
PPG and ECG as two-dimensional data from the same channel. The CNN 
is used to compute the hidden features of PPG and ECG, which can 
replace the artificial feature extraction. In the Section 1, we mainly re
view the various methods in the field of cuffless BP estimation, including 
linear correlation, ML and DL models, and propose a new perspective to 
deal with PPG and EEG. The main content of the Section 2 is the signals 
preprocessing, the structure of proposed model and the specific exper
imental details. The comparison of statistical results of the models is 
described in the Section 3. Discussions and conclusions about the results 
and the performance of the model are put forward in the Section 4 and 5 
respectively. 

2. Materials and method 

In this section, we describe the preprocessing phase including data 
slicing and resampling and introduce a more robust model structure to 
extract features effectively. The data extracted from the Multiparameter 
Intelligent Monitoring in Intensive Care (MIMIC-II) database [34] 
include PPG, ECG and ambulatory blood pressure (ABP). 

2.1. Preprocessing 

2.1.1. Noises filtering 
The signals extracted from the database are not completely clean and 

require filtering process, including filtering the high-frequency noise 
and the low-frequency noise to get rid of the baseline drift. The original 
and filtered signals are shown in Fig. 1. Some noises that may affect 
model learning are filtered out. 

2.1.2. Cutting signals through sliding window 
The filtered signals are cut into a set of unified segments by a non- 

overlapping sliding window. The reason to use the size-fixed window 
for data process is that this method can avoid the cutting error of the 
whole waveform caused by unique points and make more effective use 
of filtered data to generate usable datasets. The signal resulting from the 
window is further processed using cutting by peak and resampling. Since 
the input of two signals is regarded as two-dimensional data on the same 
channel, adopting the same data cutting mode will make them more 

unified. Meanwhile, the fixed number of peaks will ensure that the 
convolution layer extracts the same morphological features from the 
input signals. For patients, if a window of fixed length is used to cut the 
signals, the number of periodic cycles contained in individual length- 
fixed window is uncertain due to the different heart rates [27]. As a 
result, each input signal has approximately the similar waveform in
formation and does not have different input periods depending on the 
patients’ heart rate. It is easier for the model to learn the different 
characteristics of each input signal for estimation. 

2.1.3. Signal shuffle 
All the size-fixed signals for all the subjects are randomly stored in 

the database, without the object information and the time series infor
mation in the original PPG and ECG signals. The training and testing 
datasets consist of the segments from all the objects, respectively. As a 
result, the model can learn the features for all the objects with the 
training dataset. Since our model does not contain the recurrent neural 
network module which has the memory unit, all the size-fixed signals in 
the training dataset can be randomly put into the model for training. 
This procedure of time-independent makes the model to focus on the 
extraction of the graphic information of input signals in real time. This 
preprocessing method provides more possibilities for the dataset to 
combine the input signals. 

2.2. Pretreatment experiment process 

First, we extract N subjects that contain enough length. The length of 
each sample satisfies the requirement of train and test. The datasets of 
each subject are divided into 70% and 30% fragments for train and test, 
respectively. 

Second, the data from the different subjects are cut into fragments 
with everyH = 1000 points. Formally, the data for each subject will be 
separated to K segments. As a fact, if the peaks have a mistake of 
recognition which may be produced by the intensive interference from 
acquisition equipment, the whole anchor point will not be changed 
significantly. The original sampling rate was 125 Hz and so everyH =
1000 points represent 8-second length of fragment for PPG and ECG 
signals. 

Third, within the H points, there are U consecutive peaks corre
sponding the R-peak of ECG and the systolic peak of PPG. Every three 
peaks are extracted for the next preprocessing stage. 

Fourth, the extracted signals are resampled by the fixed P points for 
model and processed by min–max normalization. 

The bound of ABP is extracted by the widest range of PPG and ECG in 
one period. Formally, if the bound of PPG and ECG is [x1, xn] and 
[
y1, yn

]
, respectively, the bound of label is considered as 

Ra = [min(x1, y1),max(xn, yn) ] (1) 

This extracting method can ensure the correspondence of each input 
and output. For pursuing the consistency of each input model, each 
periodic input will be resampled to a certain value P. In this work, P was 
set to 513, which can make convolution kernel more efficient. Then, the 
input format of Xi is defined as 

Xi = 513*2 (2) 

The input Xi are defined as sequence which has two dimensions of 
information. We adopted the ideas in the field of image processing and 
regarded two signals of PPG and ECG as one picture for processing. The 
signals flow chart of pretreatment is shown in Fig. 2. 

Both PPG and ECG signals go through the above processing steps. It is 
noteworthy that these steps can improve the ability of model to extract 
features. Finally, the number of available fragment signals after above 
procedure is given by 

Asignals = N*
(

K*
U
3

)

*2 (3) 

Fig. 2. Pre-processing flow chart of signals from the original filtered signal of 
PPG and ECG to the available signals, each filtered signals are processed with 
the same operation. 

Y. Qiu et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 70 (2021) 103001

4

Every single array of input corresponds to the ground truth, which 
are extracted by the range of Ra in ABP. 

2.3. Proposed model 

In this paper, the model structure with CNN modules can effectively 
enhance the ability of describing features when the subjects have 
various forms. Squeeze and excitation (SE) block is also considered as a 
tool of enhancement for BP predication. 

Because ECG and PPG are considered as the same channel on the 
convolution layers, the model can simultaneously extract the eigen
values of the two sequences and integrate the features into the next 
convolution. Thus, the extracted morphological information of the 
channels contains two dimensional sequences effectively. The proposed 
model is composed of CNN-Sequential-Adapt layer, residual network 25- 
layer for BP (ResNet25_BP), SE block and fully connected layer. The SE 
block can reinforce the features extracted from the ResNet25_BP through 

the channel attention mechanism, and then the fully connected layers 
with SoftMax are used to integrate the information extracted from the 
previous module. 

2.3.1. CNN-sequential-adapt layer 
Due to the ResNet structure was originally designed for the classifi

cation of images with uniform length and width, the input needs to 
adapt to a fixed format. The CNN-Sequential-Adapt layers which con
tains the convolution layer, batch-normalization (BN) layer, and Max 
pooling layer are designed to generate the appropriate output for 
ResNet25_BP. The convolution kernel size of the adaptive layer needs to 
accommodate the above feature points of PPG and ECG. Based on the 
resampling size of 513 and the receptive field, the kernel size of adaptive 
layer is set to 64. The existence of square convolution kernel requires the 
length of sequence to meet the uniform length and width. Through the 
elaborate parameters of the adaptive layers, the ResNet25_BP can 
extract features effectively from waveforms of PPG and ECG. 

2.3.2. ResNet25_BP 
The residual neural networks are widely used in target classification 

and other fields, as well as a part of classical neural networks, being the 
backbone of computer vision tasks [35,36]. The main proposed net
works are ResNet50, 101, and 152 [37]. The advantage of this structure 
is that it is easy to optimize and the accuracy can be improved by 
increasing the depth of model. Its network structure also shows good 
stability and accuracy in one-dimensional signals processing[36]. The 
key conception of ResNet is the shortcut which can solve problem of 
gradient vanishing caused by increasing depth in deep neural network. 

The residual network is composed of a series of residual blocks which 
are shown in Fig. 3. Formally, the output without the residual is denoted 
as H(x), and the input that corresponding to residual is Xi. Then, the final 
output is defined as 

Xi + 1 = relu(H(Xi) + identity(Xi)) (4) 

Fig. 3. Holistic feature information flow and an overview of the proposed model framework, including the CNN-Sequential-Adapt layer, ResNet25_BP, the added SE- 
block structure, and finally the fully connected layer. Specific model structure parameters are given in Table 1. 

Table 1 
Parameters of ResNet25_BP.  

layer name output size ResNet25_BP 

conv1_x 114 × 114 3 × 3 max pool, stride 2 
1 × 1, 4 
3 × 3, 4 × 2 
1 × 1, 16 

conv2_x 57 × 57 1 × 1, 8 
3 × 3, 8 × 2 
1 × 1, 32 

conv3_x 29 × 29 1 × 1, 16 
3 × 3, 16 × 2 
1 × 1, 64 

conv4_x 15 × 15 1 × 1, 32 
3 × 3, 32 × 2 
1 × 1, 128  

1 × 1 average pool, 2-d fc, soft max  
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The original mapping is recast into H(Xi) + Xi. The structure of 
shortcut which takes the original input to output directly without 
convolution calculation makes the model easier to optimize the residual 
mapping than the unreferenced mapping. Because the original intention 
of ResNet was to solve the issue of image classification which has 
plentiful information than two dimensional biological signals, the spe
cific parameters are adjusted to adapt the biological information from 
the adaptive layer. The variation of channel is designed from 1 to 128, 
which is used to prevent the overfitting caused by the complicated 
model. The calculation of H(Xi) is composed by three weight layers that 
contain BN layers and convolution layers. 

The detailed parametric setting and network structure of 
ResNet25_BP are shown in Table 1 and Fig. 3, respectively. Finally, the 
fully connected layer with the activation function and the average pool 
is used to integrate the output from the ResNet25_BP. 

2.3.3. SE block 
The SE block is not a complete network structure, it can be under

stood as an attention mechanism which can improve the interdepen
dency between channels. It was considered as an effective way to 
promote the ability of CNN modules. In our model, we replaced the 
original residual blocks by the blocks with SE structure, as shown in 
Fig. 3. With SE block, the weight of channel from the ResNet25_BP layer 
is redistributed based on the global information. As the channel char
acteristics are recalibrated, it selectively enhances the useful informa
tion and suppresses the useless information [38]. 

The whole operation steps are given as follows. First, the global 
average pooling is used to compress the spatial dimension features, and 
the same number of channels as the input is considered for the output. 

After squeeze, each independent feature channel typically contains the 
global information. Secondly, the excitation step generates the weight 
parameters for each feature channel to explicitly set up the correlation 
between feature channels. The third step is to reweight the model pa
rameters. The weight parameters of the output reflect the importance of 
each feature channel. The scale layer operation is to weight the previous 
channel-by-channel feature to complete the recalibration of the original 
feature on the channel dimension. Through these processes, the atten
tion mechanism on the channel can effectively extract the useful features 
and perform BP calculations. For reducing the number of parameters, 
the ratio r is set to 16. 

2.4. Statistical methods 

According to the requirement of the Association for the Advance
ment of the Medical Instrumentation (AAMI) and British Hypertension 
Society (BHS), the mean error (ME), the mean absolute error (MAE) and 
the root mean square error (RMSE) are used to evaluate the performance 
of the proposed model. The definition of ME, MAE and RMSE are given 
as follows 

ME =
1
N

∑N

i=1
(Pi − Yi) (5)  

MAE =
1
N

∑N

i=1
|Pi − Yi| (6)  

RMSE =
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
|Pi − Yi|

2

√
√
√
√ (7)  

in which Pi and Yi represent the prediction from the model and the 
ground truth from the golden standard. ME is the general estimation 
ability of a model, which is determined by the average value of each 
error. The use of RMSE helps to provide a complete image of the error 
distribution. MAE can avoid the situation that the errors cancel each 
other, so it can accurately reflect the actual prediction error. Addition
ally, the statistical parameter of Pearson’s correlation coefficient (R) is 
also used to evaluate the correlation between the prediction and ground 
truth, which is given by 

R =
conv(X,Y)

σx⋅σy
(8)  

3. Result 

Since the gold standard of BP value is determined by the invasive 
method, the evaluation standard of BP calculated by PPG and ECG is to 
minimize the error between the estimation performance and the inva
sive BP. For evaluating the reliability of the proposed model, we extract 
1216 and 40 records containing many of waveform information from the 
database, respectively. The advantage of the model proposed in this 
paper is that it can extract macro features. Thus, the analysis of the 
statistical results will focus on the dataset with more samples. Since the 
hemodynamic information of each sample is unique, analyzing the cycle 
morphology also confirms that the same waveform may correspond to 
the different BP values. As a result, each subject will provide part of the 

Table 2 
Comparative statistical analysis on the different number of input signals and the selection of SE block.  

Model Number of input signal J = 8  Number of input signal J = 16  Number of input signal J = 32   

SBP  DBP SBP  DBP  SBP  DBP   

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Without SE block  5.68  7.83  4.11  5.76  5.15  7.11  3.85  5.34  4.69  6.36  3.53  4.81 
With SE block  4.75  6.65  3.44  4.99  4.20  5.87  3.13  4.53  3.70  5.11  2.81  3.95  

Table 3 
The performance of the proposed model on AAMI.   

ME STD Subjects 

Required Deviation <5 mmHg <8 mmHg >85 
Systolic Blood Pressure 0.18 5.11 1216 
Diastolic Blood Pressure 0.01 3.95 1216  

Table 4 
The performance of the proposed model on BHS.  

Cumulative Frequency of Error <5 mmHg <10 
mmHg 

<15 
mmHg 

Grade A 60% 85% 95% 
Grade B 50% 75% 90% 
Grade C 40% 65% 85% 
SBP prediction(J = 16) without SE- 

block 
61.07% 86.72% 95.48% 

DBP prediction(J = 16) without SE- 
block 

73.65% 94.28% 98.20% 

SBP prediction(J = 16) with SE-block 70.61% 91.85% 97.78% 
DBP prediction(J = 16) with SE-block 82.17% 96.22% 98.80% 
SBP prediction(J = 32) without SE- 

block 
63.93% 89.81% 97.59% 

DBP prediction(J = 32) without SE- 
block 

76.37% 95.48% 99.15% 

SBP prediction(J = 32) with SE-block 76.01% 94.33% 98.70% 
DBP prediction(J = 32) with SE-block 85.41% 97.15% 99.52%  
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Fig. 4. Bland-Altman plots of SBP (a) and DBP (b) without SE blocks and SBP (c) and DBP (d) models with SE blocks. The green line is a linear regression analysis 
of errors. 
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data for training [20,27,29,39]. This classification method ensures that 
the model can extract enough feature information for each subject, 
because the model needs to extract the intrinsic features for each subject 
which has the unique hemodynamic information. 

As described in Section 2.1.3, the signals which have the information 
of different graphics are imported to the model at the same time. The 
signals imported into the model can even come from the different sub
jects. The ability to rely entirely on the current graphics input can be 
used for patients who have the unstable PPG or ECG. In order to evaluate 
the performance of the model with different number J of input signals, 
we tested the performance of model when different amounts of input are 
fed, including J = 8, 16, 32. 

To test the effect of the SE block on the model, we counted the model 
output with and without the block. Specific indicators are shown in 
Table 2. The MAE for SBP and DBP are 3.70 mmHg and 2.81 mmHg. As 
can be seen from Table 2, when J = 32, after adding the SE block module 
to the residual block, the MAE value of SBP is reduced from 4.69 mmHg 
to 3.70 mmHg, and the MAE value of DBP is reduced from 3.53 mmHg to 
2.81 mmHg. 

In order to further evaluate the performance of the model, the value 
of ME and standard deviation are given in Table 3 with the mean and 
standard deviation of estimation error for SBP and DBP 0.18 ± 5.11 
mmHg and 0.01 ± 3.95 mmHg, respectively. 

3.1. Performance evaluation on AAMI 

The standard of AAMI requires ME and standard deviation values 
lower than 5 mmHg and 8 mmHg, respectively. The proposed model 
meets the AAMI criteria in all cases of the experiment. Table 3 presents 
the concrete performance of the best results of the proposed model, 
showing that the statistical parameters still meet the standard when the 
number of subjects is larger than the requirement. 

3.2. Performance evaluation on BHS 

The standard of BHS presents grades A, B and C based on the cu
mulative frequency percentage errors MAE less than three different 
thresholds, i.e, 5, 10, and 15 mmHg, respectively [40]. The evaluation 
criterion based on BHS standard is assessed on the number of input 
signals J and the selection of SE block. When the number of input signals 
J = 16 and 32, the result of the proposed model satisfies the requirement 
of grade A. The specific data are given in Table 4. 

3.3. Statistical analysis 

The Bland–Altman diagrams of performance from the model with 
and without SE are presented in Fig. 4. Its underlying idea is to calculate 
the consistency limit of two sets of measurement results, and intuitively 
reflect this consistency limit with images. If the scatter points are uni
formly distributed in the standard deviation line and the mean value is 
close to zero, the measurement result is better. Our results indicate that, 
with the linear regression analysis of Bland-Altman plot, the slope of 
linear fitting increases to a certain extent and the errors keep decreasing 
after adding SE block to the model. The slope of error linear fitting is 
shown in the upper right corner of each subfigure in Fig. 4, showing the 
effectiveness of adding modules for further calibration. 

Violin Plot is used to show the distribution state and probability 
density of multiple groups of data. This chart combines the character
istics of a box chart and a density chart, which is mainly used to show the 
shape of errors distribution in this study. As shown in Fig. 5, by 
observing and comparing the violin plots of SBP and DBP errors, it can 
be found that the errors of the two plots are almost concentrated near 
zero, and the boundary is relatively smooth, indicating that the model 
performs better with SE block. 

The regression plot is used to evaluate the linear relationship be
tween the predicted value and the actual value. When the predicted 
result is better, the linear relationship between the two data is stronger. 
As shown in the contrast of Fig. 6, the Pearson’s correlation coefficient R 
increases when the residual block adds the SE block, which can improve 
the convolution performance by redistributing the weight of channel 
from feature map. The box plot is mainly used to reflect the distribution 
characteristics of the original data, providing key information about the 
location and dispersion of the data. In this study, it mainly reflects the 
differences between the true values and predicted results in SBP and 
DBP. 

The box plots of estimation error for the selection of SE block are 
shown in Fig. 7. The upper and lower horizontal lines correspond to the 
upper and lower edges of the box graph respectively, and the red cross 
marks indicate the abnormal values of the data. The horizontal line in 
the middle of the box represents the median point of the data. Fig. 7 
shows that the model after excluding outliers performs better. 

3.4. Comparison with previous work 

In this study, the accuracy and statistical information of the model 
are evaluated on both large subjects (1216) and small subjects (40). Due 
to the influence of the main structure of the model, the performance on 
large samples is more noteworthy. In this paper, we used convolution 
module structure because of its theoretical support based on graphic 
information. Table 5 is a list of the results from the previous researches 
on cuffless BP estimation. Because the sample databases used in previous 
studies are not the same, even if the same database is used, the samples 
extracted may not be completely consistent. As a result, the results given 
in Table 5 only presents a statistical comparison. 

4. Discussion 

In this paper, we proposed a composite neural network consisting of 
CNN-Sequential-Adapt layer, Renet25_BP layer with SE block, and fully 
connected layers. Inspired by ML in the field of cuffless BP estimation, 
this paper innovatively proposed a completely graph-based neural 
network structure for BP prediction. The first layer of the compound 
neural network transforms the initial input graph information into the 
input shape that can be accepted by Renet25_BP layer. The accuracy 
improvement effect is explored when the network structure has SE block 
or not. 

In interpretability, the CNN-Sequential-Adapt layer can control the 
specific size of the convolution kernel to adjust the convolution recep
tive field to ensure that it can fully accommodate all the feature 

Fig. 5. Violin plots of SBP (a) and DBP (b) errors for models without SE block 
and SBP (c) and DBP (d) with SE block, where the red line is the mean value of 
the error. 
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Fig. 6. The regression plots for (a) SBP and (B) DBP without SE block (upper) and (C) SBP and (d) DBP with SE block (lower) are shown above. The correlation 
coefficients are plotted at the top of each plot and the red line in the plot is the linear fit to the predicted point. 

Fig. 7. The boxes plot for the ground truth of (a) SBP and (b) DBP, the estimation with and without SE block.  
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information. Renet25_BP layer improves the overfitting phenomenon 
caused by the more layers and adjusts the specific pooling type by 
modifying ResNet. The structure of Renet25_BP is the main module that 
absorbs the characteristics of the input information, and its specific 
parameters are given in Table 1. The SE block enhances the feature 
extraction capability of the previous layer by reassigning the channel 
features. As can be seen from Table 2, when J = 32, after adding the SE 
block module to the residual block, the MAE value of SBP is reduced 
from 4.69 mmHg to 3.70 mmHg, and the MAE value of DBP is reduced 
from 3.53 mmHg to 2.81 mmHg. Furthermore, Fig. 4 shows that the 
lower limit of DBP is around 50 mmHg and the upper limit of SBP is 165 
mmHg, which is determined by the range of the ground truth in training 
set. Therefore, the accuracy of the model should be reconsidered when 
facing the cases beyond this range. 

We showed that the model with SE block has a good contribution to 
the feature extraction ability of PPG and ECG signals. This also proves 
that the model with SE block effectively extracts the eigenvalues of the 
model. The proposed model only depends on the input signals at the 
current moment, which can be used to estimate BP completely relying 
on the graph characteristics of the signals. For practical application, the 
output response speed is faster, and in the situation for patients with 
unstable input signals, the network structure based on graph informa
tion is more reliable. 

5. Conclusion 

The deep learning model based on graph information proposed for 
BP prediction in this paper is more effective in the performance of the 
database with more subjects. The previous researches on the extraction 
of PPG and ECG features with ML methods indicate that the biological 
signals such as PPG and ECG have more graph information to be mined. 
The accuracy of BP prediction can be significantly improved by adding 
CNN modules and SE block in deep learning model to promote the 
feature extraction ability. The outputs of the proposed model meet the 
AAMI criteria and the BHS A rating. 

The cuffless BP measurement can continuously detect the dynamic 
BP values, and the deep learning methods based on the graph infor
mation extraction are more stable and adaptive for database with large 
subjects. Such convenient and painless BP predication method with 
easy-to-detect in vitro biological signals through intelligent wearable 
devices used in daily life will be widely applied in various fields of life, 
such as medical treatment, sports [41]. We believe that CVDs can be 
effectively prevented in the near future with the continuous detection of 
BP based on the combination of the wearable hardware and deep- 
learning algorithms. 
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